Which LC Duplex Connector Suits Your Network?

As data processing technology has advanced rapidly, smaller and more compact cabling components also meet their golden age. Nowadays, there are a number of connectors in the market. However, LC connector, also well-known as the SFF (Small Form Factor) connectors, is currently the most frequent used types in LANs and data center. However, do you really know them well? And do you know which one suits your network better? Today, this post will get you to know more about LC duplex connectors.

Typical Type—Standard LC Duplex Connector

The standard LC duplex connector, namely the traditional type, was developed by Lucent Technologies. It is designed with a retaining tab mechanism that is similar to the RJ45 connector. Its connector body is squarish shape that is similar to SC connector. Thus, LC is also called mini SC. Standard LC duplex connectors are LC with a duplex configuration with a plastic clip. The ferrule of a LC connector is 1.25 mm. As the basic type, the standard LC duplex connectors are universal in various fiber optic network applications.

lc-duplex-connector

Variant Type—Mini-LC Duplex Connector

The mini-LC duplex connector is a variation of standard LC. It uses current industry-standard LC connectors but allows closer ferrule spacing by using the duplex clip (usually with color coding)—mini-LC has a reduced center spacing of 5.25 mm compared to a standard LC of 6.25 mm. And this type of LC duplex connectors is designed to operate with the Mini SFP transceivers and it enables a higher density deployed port count for data center network equipment. Generally, black color duplex latch clips and boots are used to distinguish the mini-LC duplex connectors.

Network Safeguard—Keyed LC Duplex Connector

There are 12 color-coded keyed designs in keyed LC assemblies. Each color of keyed LC duplex connectors represents a unique keying pattern which only allows its matched color-coded adapter mating. And the keyed features cannot be duplicated with standard LC components thereby keyed LC duplex connectors can reduce the risk of accidental or malicious network access, particularly in shared access areas or in secure hierarchical environments.

lc-keyed

High-density Application Helper—LC Duplex Uniboot Connector

LC duplex connector with uniboot is two LC connectors encased in a common housing with one boot, terminated on a single twin-fiber round cable. This type of connector is more compact compared to standard LC duplex. And the extended longer latch on top of the connector body makes it easier to disengage from the adapter, even in high-density packaging. Fiber patch cables terminated with uniboot LC duplex connectors, are ideal for high-density cabling application since they can reduce more fiber counts and greatly reduce cable management space.

lc-uniboot-duplex-connector

High-density Installation Assistant—LC-HD Duplex High Density Connector

If you have the experience of releasing LC duplex connectors in patch panels in high-density cabling, you may know how difficult this can be. Because in the cabling case, thumbs and forefingers are not ideally suited to operate the release lever and pulling the connector. But LC-HD duplex connectors can solve this problem perfectly. With a flexible “pull-tab” or “push-pull tab”, the LC-HD duplex connectors enable the connector to be disengaged easily from densely loaded panels without the need for special tools, which allows users easy accessibility in tight areas when deploying in data center high-density applications.

lc-hd-patchcord_%e5%89%af%e6%9c%ac

Conclusion

There are diverse variants of LC duplex connectors. Different types have different features. But as the fiber optic communication is developing quickly and the increasing requirements for smaller size components, choosing the suitable connectors is important. Of course, choosing which one is based on your actual applications and particular needs. FS.COM provides various kinds of fiber optic connectors and cables with those connectors which can maximize the effectiveness for your high-density applications, data centers, interconnect and cross-connect, private networks and premise installations. Besides, after reading this post, do you know whether you have chosen the right connector for your network?

Sources:http://www.chinacablesbuy.com/lc-duplex-connector-suits-network.html

How to Build Your Data Center?

Today’s data centers are complex. It houses dozens of diverse bandwidth-intensive devices tightly such as servers, clustered storage systems and backup devices, all of which are interconnected by cables. Therefore, the importance of a reliable, scalable and manageable cabling infrastructure is self-evident. Then how to build a data center which can meet today and future growth? This article may give you some advice about it.

5

How to Plan?

As data center houses a number of servers which are connected by numerous cables, it’s important to make it organized. If not, the last thing you will encounter is a tangled mass of cables that make it impossible to determine how severs are connected. Let alone to build a high-efficiency data center. Here are some tips on how to start your data center.

Using a Structured Approach

Using a structured approach to make data center cabling means designing cable runs and connections to facilitate identifying cables, troubleshooting and planning for future changes. In contrast, spontaneous or reactive deployment of cables that only suits immediate needs often makes it difficult to diagnose problems and to verify proper connectivity.

Using Color to Identify Cables

Colors can provide quick visual identification, which simplify management and can save your time when you need to trace cables. Color coding can be used ports on patch panels, color sleeves, connectors and fiber cables.

Establishing a Naming Scheme

Once the physical layouts of a data center are defined, applying logical naming will make it easy to identify each cabling component. Effective labeling brings better communications and can reduce unnecessary problems when locating a component. The suggested naming scheme often includes Building, Room, Grid Cell, Workstation, etc.

How to Select the Necessary Cabling Components?

After knowing how to construct the backbone network of a data center, selecting a right and suitable cabling components can quickly become overwhelming. Each cabling component has its own advantages and disadvantages. So it’s important to get the right equipment purchased and deployed to avoid future cabling problems. Below are some tips on how to choose corresponding cabling components.

Patch Panel

Patch panels enable easy management of patch cables and link the cabling distribution areas. How to choose a suitable one? First, the patch panels which allow different cable connectors to be used in the same patch panel are a good choice. Second, when choosing a patch panel, the main types of connectors within one panels are LC for fiber and RJ45 for copper. Finally, patch panels with colored jacks or bezels allow easy identification of the ports also can be taken into consideration.

angledpatchpanels

Cable Manager

Cable managers offer a neat and proper routing of the patch cables from equipment in racks and protect cables from damage. Generally, there are horizontal and vertical cable managers. And there are different requirements of these cable managers. When choosing horizontal cable managers, it’s essential to make sure that certain parts of the horizontal cable manager are not obstructing equipment in the racks and that those individual cables are easy to be added or removed. While choosing vertical cable managers, additional space used to manage the slack from patch cords is needed.

cable-management-panel

Cable Ties

Cable ties are used to hold a group of cables together or fasten cables to other components. Using cables ties can avoid crushing the cables and impacting cable performance. Velcro cable ties provided by Fiberstore are perfect for controlling and organizing wires, cords, and cables. Besides, using ties will help you identify cables later and facilitate better overall cable management.

cable-ties

Of course, except for what have been mentioned above, there are other cabling components which need to be selected carefully such as cable labels, backbone cables and so on.

What Should Be Paid Attention to When Installation?
  • Cabling installations and components should be compliant with industry stands.
  • Use thin and high-density cables wherever possible, allowing more cable runs in tight spaces.
  • Remove abandoned cables which can restrict air flow and may fuel a fire.
  • Keep some spare patch cables. The types and quantity can be determined from the installation and projected growth. Try to keep all unused cables bagged and capped when not in use.
  • Avoid routing cables through pipes and holes, which may limit additional future cable runs.
Summary

Building a data center is not an easy task. Each step and component selecting during installations need carefulness and patience. FS.COM provides all cable products including structured cables, patch panels, cable ties, labels and other tools needed in data center installation. All of them will maximize the efficiency and reliability of the data center installation.

Sources:http://www.fiber-optic-components.com/build-data-center.html

Fiber Optic Pigtail Selection Guide

With the network cabling environment becoming more and more complex, there is a growing need to terminate fiber optic cables in an efficient and faster manner. Apart from fiber connectors, fiber optic pigtails also can offer a quick way to achieve this goal. Today, this post will introduce the basics and common types of fiber optic pigtail for your reference during pigtail selection.

What Is Fiber Optic Pigtail?

Fiber optic pigtail, sometimes also called bare fiber, is a piece of optical cable terminated with optic connectors at only one side while leaving the other side no connectors. So the side with connector can link to the equipment (eg. optical transceiver or fiber converter module) and the other side can be melted with fiber optic cables. Besides, fiber optic pigtail have a similar structure with fiber optic patch cords which are terminated with connectors on both ends. Sometimes, technicians may need to cut down the fiber optic patch cords in the middle to get two fiber pigtails. Fiber optic pigtails are usually used with fiber optic management equipment like ODF (optical distribution frame), splice closures and cross cabinets.

fiber-pigtail

Selecting Guidance

Fiber optic pigtails are designed to meet or exceed all of the performance requirements for current and proposed applications. They are available in various types, and which type is suitable for your network? Here is a simple selection guide.

According to the Fiber Connector

As we all know, there are a number of fiber connectors. Therefore, according to fiber connector, fiber optic pigtail also can be divided into various types.

LC fiber optic pigtail—as its name shows, this pigtail uses the LC connector. The LC connector is one of the most well known and used optical connector types in the world nowadays. It features low cost and high precision 1.25mm outer diameter ceramic ferrules. And LC fiber optic pigtails are suitable for high-density installations. What’s more, Fiberstore offers a new type of optical pigtail—keyed LC pigtail. This pigtail has different colors and can only be connected with the same colored adapter, which offers mechanical network security for organizations that want to segregate networks due to privacy or security concerns.

FC fiber optic pigtail—the pigtail use the metallic body FC optic connectors. And it’s well known that FC connectors feature the screw type structure and high precision ceramic ferrules. FC fiber optic pigtails and its related products are widely applied for the general and average applications.

MTRJ fiber optic pigtail—this pigtail use the MTRJ connectors that are specially designed for fast Ethernet. And MTRJ fiber optic pigtail connectors are all duplex types with a mini ribbon fiber inside. They have the features of the MT and RJ45 connectors. MTRJ optical fiber pigtails are small form connector products that fit for density applications.

Of course, except for the fiber optic pigtails mentioned above, there are other types of optical pigtails such as SC, ST, MU and E2000 fiber optic pigtails which also play a vital role in optical communication.

According to the Application Environment

Generally speaking, whether natural or manmade, cataclysmic or catastrophic, rugged and unforgiving environments need the use of high-performance fiber optic cables. So does fiber optic pigtails. Here are two commonly used pigtails which perform well in harsh environment.

Armored Pigtail

During some fiber optic installations, there is a need to provide extra protection for the cable due to the installation environment. Enclosed with stainless steel tube or other strong steel inside the outer jacket, armored fiber optic pigtails could provide extra protection for the optical fiber and added reliability for the network and reduce the unnecessary damage due to rodents, construction work, weight of other cables and other factors.

armored-pigtail

Waterproof Pigtail

Waterproof pigtail is designed with a stainless steel strengthened waterproof unit and armored outdoor PE (Poly Ethylene) jacket for further protection. With this special structure, it can be used in harsh environments like communication towers, CATV and military. Waterproof pigtail has good toughness, tensile and reliable performance. It is mainly deployed in outdoor connection of the fiber optical transmitter.

waterproof-pigtail

Conclusion

Fiber optic pigtails can be divided into different types according to different criteria. As a professional fiber optic components supplier, FS.COM provides various kinds of fiber optic pigtails with different fiber counts such as simplex, duplex, 4 fibers, 6 fibers, 8 fibers, 12 fibers, 24 fibers, 48 fibers and so on. All of these fiber pigtails can provide an easy and fast way for your fiber terminations. If you have any question, please kindly contact sales@fs.com.

From:http://www.chinacablesbuy.com/fiber-optic-pigtail-selection-guide.html

Overview of Bi-Directional Transceiver Modules

During optical transmission process, it’s no wonder that using one fiber to receive data from networking equipment, and another one to transmit data to the networking equipment. This kind of transmission mode will increase investment cost certainly. Luckily, here is a type of transceiver can solve this problem. It’s bi-directional transceiver. Today, this article will take you to make sense why bi-directional transceiver can make it possible to transmit data over one fiber.

Basics of BiDi Transceiver

BiDi is short for bidirectional. BiDi transceiver is a type of fiber optic transceivers which is used WDM (Wavelength Division Multiplexing) bi-directional transmission technology so that it can achieve the transmission of optical channels on a fiber propagating simultaneously in both directions. BiDi transceiver is only with one port which uses an integral bidirectional coupler to transmit and receive signals over a single fiber optical cable. Thus, it must be employed in pairs.

How Does BiDi Transceiver Work?

The obvious difference between BiDi transceivers and traditional two-fiber fiber optic transceivers is that BiDi transceivers are fitted with Wavelength Division Multiplexing (WDM) couplers, also known as diplexers, which combine and separate data transmitted over a single fiber based on the wavelengths of the light. For this reason, BiDi transceivers are also referred to as WDM transceivers.

To work effectively, BiDi transceivers must be deployed in matched pairs, with their diplexers tuned to match the expected wavelength of the transmitter and receiver that they will be transmitting data from or to.

For example, if paired BiDi transceivers are being used to connect Device A (Upstream) and Device B (Downstream), as shown in the figure below, then:

  • Transceiver A’s diplexer must have a receiving wavelength of 1550nm and a transmit wavelength of 1310nm
  • Transceiver B’s diplexer must have a receiving wavelength of 1310nm and a transmit wavelength of 1550nm

bidi-transceiver-diagram

Common Types of BiDi Transceiver
BiDi SFP Transceiver

BiDi SFP transceiver is typically applied for the high-performance integrated duplex data link over a single optical fiber. It interfaces a network device mother board (for a switch, router or similar device) to a fiber optic or unshielded twisted pair networking cable. And the most typical wavelength combination is 1310/1490 nm, 1310/1550 nm, 1490/1550 nm and 1510/1570 nm. This BiDi SFP transceiver is used in optical communication for both telecommunication and data bidirectional communications applications.

bidi_sfp-b-1

BiDi SFP+ Transceiver

BiDi SFP+ transceiver is an enhanced SFP transceiver. It is designed for bi-directional 10G serial optical data communications such as IEEE 802.3ae 10GBASE-BX by using 1330/1270nm transmitter and 1270/1330nm receiver. And its transmission distance is up to 20 km.

bidi-sfp-plus

BiDi X2 Transceiver

BiDi X2 transceivers are designed for bi-directional 10G serial optical data communications, which likes BiDi SFP+ transceivers. The transceiver consists of two sections: the transmitter section uses a multiple quantum well 1330/1270nm DFB laser. And the receiver section uses an integrated 1270/1330nm detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC. This BiDi transceiver is mainly used in Ethernet network.

bidi-x2

Advantages of BiDi Transceiver

The obvious advantage of utilizing BiDi transceivers, such as BiDi SFP+ and BiDi SFP transceivers, is the reduction in fiber cabling infrastructure costs by reducing the number of fiber patch panel ports, reducing the amount of tray space dedicated to fiber management, and requiring less fiber cable.

While BiDi transceivers (a.k.a. WDM transceivers) cost more to initially purchase than traditional two-fiber transceivers, they utilize half the amount of fiber per unit of distance. For many networks, the cost savings of utilizing less fiber is enough to more than offset the higher purchase price of BiDi transceivers.

Conclusion

In summary, BiDi transceivers can combine and separate data transmitted over a single fiber based on the wavelengths of the light. That is to say, to achieve the same transmitting result, it needs less money. Except for above SFP & SFP+ BiDi transceivers, FS.COM also provides 40G BiDi transceiver. This BiDi transceiver has two 20 Gbps channels, each transmitted and received simultaneously on two wavelengths over a single MMF strand (OM3 or OM4). Any one of the transceivers would meet your different application requirements with high performance.

From:http://www.fiber-optic-components.com/overview-bi-directional-transceiver-modules.html

How Much Do You Know About WDM Transponder?

In optical fiber communications, a WDM transponder is a common element that sends and receives the optical signal from a fiber. Maybe you have seen and used it many times. But do you really know it clearly? How much do you know? Today, this article is going to talk about something about WDM (Wavelength Division Multiplexing) transponder.

What’s WDM Transponder?

WDM transponder, also named as fiber optic transponder, is an optical-electrical-optical (OEO) wavelength converter which is designed to perform an O-E-O operation to convert wavelengths of light. It plays a key role in WDM system, especially in DWDM (Dense Wavelength Division Multiplexing) system. Its name “transponder” is short for transmitter and responder, which clearly show its purpose. They are protocol and rate-transparent fiber media converters that support SFP, SFP+, XFP and QSFP transceivers with data rates up to 11.32 Gpbs. WDM transponders extend network distance by converting wavelengths (1310 to 1550nm), amplifying optical power and can support the “Three Rs” to Retime, Regenerate and Reshape the optical signals. In general, there is an O-E-O (optical-electrical-optical) function with this device. Fiber optic transponders and optical multiplexers are usually present in the terminal multiplexer.

How does the WDM Transponder work?

The most distinguished characteristic of WDM transponder is that it can automatically receive, amplify, and then retransmit a signal on a different wavelength without altering the data/signal content. In today’s commercial networks, wavelength conversion is only realized with optical to electronic to optical (O-E-O) transponders. OEO Transponder works as a regenerator which converts an optical input signal into electrical form, generates a logical copy of an input signal with a new amplitude and shape of its electrical pulses and uses this signal to drive a transmitter to generate an optical signal at the new wavelength. Here is a picture showing how a transponder works. From left to right, the transponder receives an optical bit stream operating at one particular wavelength (1310 nm). And then it converts the operating wavelength of the incoming bitstream to an ITU-compliant wavelength and transmits its output into a DWDM system. On the receive side (right to left), the process is reversed. The transponder receives an ITU-compliant bit stream and converts the signals back to the wavelength used by the client device.

wdm-transponder

What’s the Major Functions of WDM Transponder?

WDM transponder is a vital element in optical communication. Usually, its major function includes:

  • Conversions between electrical and optical signals
  • Serialization and deserialization
  • Control and monitoring
Why WDM Transponder Is Needed in WDM System?

There are several reasons that we need wavelength-converting transponder. The first reason is that they can connect incompatible equipment. Such an example is the conversion of 1300nm carrying wavelength of optic networks. Another one is because we have different fiber optic networks with different providers and different criteria. Therefore, we need WDM transponder to traverse from one fiber network to another. WDM transponder helps us to reduce the number of wavelengths required.

How Many Applications of WDM Transponder Do You Know?

WDM transponders are widely used in a number of networks and applications. The following are their major applications.

Convert Multimode to Single-Mode Fiber

It’s known to us that multimode fiber is often used for short distance transmission while single-mode fiber is used for long distance transmission. In order to exceed the limitation of multimode fibers, mode conversion is needed in networks. As the following figure showing, two switches are connected by the WDM transponder which convert the multimode fibers to single-mode fibers.

Convert-Multimode-to-Single-Mode-Fiber

Convert Dual Fiber to Single-Fiber

In this case, two dual fiber switches are connected with a single-fiber via two transponders. The single fiber uses 1310nm and 1550nm wavelengths over the same fiber strand in opposite directions. As the following figure showing.

convert-cual-fiber to-single-fiber

Wavelengths Conversion

The most common application of WDM transponder is wavelengths conversion. Fiber optic communications equipment with fixed fiber interfaces (ST, SC, LC or MTRJ connectors) operating over legacy wavelengths (850nm, 1310nm, 1550nm) must be converted to CWDM wavelengths with a transponder. In this application, the transponder is called WDM transponder or wavelength-converting transponder.

wavelength-conversion

In addition, WDM transponder also can be used to extend 10G OTN network distances, SONET ring distances and provide a standard line interface for multiple protocols through replaceable 10G small form-factor pluggable (XFP) client-side optics.

Conclusion

With its own special features, WDM transponder facilitates a wide application in optical networks. Fiberstore provides a number of choices for OEO WDM transponder which have high performance and good quality. Here you can find different transmission rates of this products such as 2.5G, 4.25G, 8G, 10G and 40G, and different ports of OEO converters such as SFP+ to SFP+, SFP+ to XFP, XFP to XFP, etc. If you want to know more, please visit FS.COM.

Sources:http://www.cwdm-dwdm-oadm.com/blog/a/81/How-Much-Do-You-Know-About-WDM-Transponder